• Sep 30, 2024 News!Vol.16, No. 3 has been published with online version.   [Click]
  • Jun 13, 2024 News!Vol.16, No. 2 has been published with online version.   [Click]
  • Mar 26, 2024 News!Vol.16, No. 1 has been published with online version.   [Click]
General Information
    • ISSN: 1793-8236 (Online)
    • Abbreviated Title Int. J. Eng. Technol.
    • Frequency:  Quarterly 
    • DOI: 10.7763/IJET
    • APC: 500 USD
    • Managing Editor: Ms. Shira. Lu 
    • Abstracting/ Indexing: Inspec (IET), CNKI Google Scholar, EBSCO, ProQuest, Crossref, Ulrich Periodicals Directory, Chemical Abstracts Services (CAS), etc.
    • E-mail: ijet_Editor@126.com
IJET 2024 Vol.16(3): 143-148
DOI: 10.7763/IJET.2024.V16.1271

Using Deep Learning Algorithms Prediction of the Closing Price of Stocks with Indication Features

Yoon Kong1,*and Uddalok Sen2
1. The Irvine High School, 4321 Walnut Ave, Irvine, CA 92604, USA
2. The University of Engineering and Management, Kolkata, West Bengal, India
Email: roy.yoon.kong@gmail.com (Y.K.); uddalok.sen@uem.edu.in (U.S.)
*Corresponding author

Manuscript received April 10, 2024; revised May 13, 2024; accepted June 4, 2024; published August 9, 2024

Abstract—Stock market price forecasting is currently a hot topic for research in the artificial intelligence field. It is quite challenging to correctly forecast stock market returns because of the financial stock markets’ significant volatility and non-linearity. Programmable methods of prediction are now more accurate at predicting stock values thanks to developments in artificial intelligence and computational power. In the present study, stock price data from five different sectors with 10 years of history has been collected, and the closing price for each stock has been predicted using Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) models. The comparison between the metrics has also been shown in the following study. Two new features from the momentum indicator and long-term and short-term moving averages of the stock price have been engineered as two newly introduced indicator features in the machine learning algorithms. The closing price of stocks has been predicted in this study with the help of existing and newly introduced features.

Keywords—stock price prediction, bollinger band, long-term Moving Average (MA), short-term Moving Average (MA), Long Short-Term Memory (LSTM), Artificial Neural Network (ANN)
 

Cite: Yoon Kong and Uddalok Sen, "Using Deep Learning Algorithms Prediction of the Closing Price of Stocks with Indication Features," International Journal of Engineering and Technology, vol. 16, no. 3, pp. 143-148, 2024.

Copyright © 2008-2024. International Journal of Engineering and Technology. All rights reserved. 
E-mail: ijet_Editor@126.com