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Abstract—This study presents an innovative industrial 
electroplating automated hanging system aimed at addressing 
critical challenges prevalent in traditional manufacturing 
processes, such as labor shortages and high employee turnover. 
The system integrates TensorFlow and Keras deep learning 
frameworks, employing the YOLO (You Only Look Once) 
machine vision recognition model alongside existing image 
processing techniques. This integration signifies a significant 
reduction in reliance on manual labor and introduces 
automation through the incorporation of robotic arms, marking 
a pivotal advancement in the field of intelligent machinery. 
Following extensive training and testing on a dataset of 512 
target images, the system achieved impressive results: an 
average precision rate of 97.05%, a recall rate of 100%, an F1 
score of 1.00, and an average precision mean average precision 
of 97.05%. The deployment of a custom C# control interface 
further enhances operational efficiency and strengthens user 
interaction, facilitating seamless coordination between software 
and mechanical systems. Despite a slightly lower production 
efficiency compared to manual operation, with a throughput of 
14 items per minute, the automated assembly system boasts 
continuous 24-hour operation capability and offers a potential 
solution to Taiwan’s widespread labor shortage issue. The 
system is projected to recoup its investment within 
approximately six months if operated continuously for 24 hours 
a day. Despite its relatively lower production efficiency, the 
system’s continuous operation and economic benefits 
underscore its significant value. This research not only 
highlights the potential of the YOLO algorithm in industrial 
automation but also elucidates the profound impact of deep 
learning technologies in overcoming labor dependency 
challenges in traditional industrial environments. Furthermore, 
the study emphasizes the importance of advanced technologies 
such as machine learning and robotics in modern industrial 
processes, offering opportunities for the realization of more 
sustainable, efficient, and cost-effective manufacturing 
solutions. 
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I. INTRODUCTION

In an increasingly demanding and competitive market, 
various industries are striving to create high-end products 
that meet the strictest sustainability and efficiency 
requirements. With the promotion and development of 
industrial automation concepts, the integration of 
heterogeneous electromechanical systems such as artificial 
intelligence [1–3], optoelectronic sensors [4], and computer 
vision recognition [5] is one of the most critical research 
projects for future fully automated systems. As technology 

continues to advance, AI technology has spread in recent 
years to fields such as defense industries [6], autonomous 
vehicles [7–9], semiconductor manufacturing [10], Smart 
manufacturing [11, 12], and medical rehabilitation [13]. In 
traditional mechanical industries where there is a significant 
demand for labor, combining automation with robotic arms 
and computer vision assistance to replace manual labor for 
complex, hazardous, or labor-intensive tasks can greatly 
accelerate work efficiency, reduce task durations, and 
address the aforementioned challenges. Utilizing computer 
vision for “recognition and positioning” in conjunction with 
robotic arms for “grasping and positioning” can enhance the 
efficiency of traditional industries while reducing cost 
requirements. 

Based on vision, robot guidance is a rapidly developing 
field in the robotics and automation sectors. Robots use 
computer vision algorithms to perceive their surroundings, 
identify objects [14, 15], and navigate in complex 
environments. This technology plays a crucial role in various 
applications, including industrial automation, autonomous 
vehicles, and service robots [16, 17]. By adopting cameras 
and advanced image processing techniques, vision-guided 
robots can obtain real-time data from their environment, 
enabling them to make informed decisions and execute tasks 
with higher precision and efficiency. In recent years, deep 
learning algorithms, including Convolutional Neural 
Networks (CNNs) [18, 19], have significantly improved the 
performance of vision-based robot guidance systems. These 
algorithms empower robots to recognize and track objects, 
estimate their positions and orientations accurately, and 
perform tasks such as grasping, picking, and placing with 
high precision [20]. 

In traditional industrial production, manual labor for 
assembly and transportation is common but inefficient. 
Quick, high-quality production is crucial in competitive 
industries, yet manual processes are slow and rely on skilled 
workers. Nowadays, many industries use computer 
vision-assisted robotic arms for handling electroplated parts, 
a key element in automated production lines. These robotic 
arms, essential in many traditional industries, pick and 
position parts precisely. Our system, utilizing computer 
vision for object recognition, captures and processes images 
of these parts. It identifies their characteristics, differentiates 
features, and guides the robotic arms to accurately place the 
parts. This system greatly improves speed and efficiency on 
the production line. 
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II. SYSTEM ARCHITECTURE 

The system architecture presented in this research 
emphasizes the application of artificial intelligence visual 
recognition technologies in the handling of electroplating 
components. This system integrates the YOLO object 
detection algorithm with robotic arms and automated devices, 
achieving highly precise and rapid processing of 
electroplated assemblies, as illustrated in Fig. 1. Through 
accurate visual identification and automated physical 
manipulation, the system effectively suspends electroplated 
components onto carriers, significantly enhancing production 
efficiency and product consistency. Additionally, the system 
employs self-trained data to optimize the YOLO algorithm, 
thereby improving its capability to identify various 
electroplated components. By combining deep learning with 
advanced image processing techniques, the accuracy of 
identification and detection is further enhanced. This 
integration of technologies not only increases operational 
efficiency but also addresses challenges encountered in the 
production process, such as labor shortages and quality 
control, bringing new possibilities for automation and 
intelligence in traditional industries. 

 
Fig. 1. Automated mounting system architecture for electroplating 

components with AI visual technology. 
 

In this research, we employed the YOLO (You Only Look 
Once) target detection algorithm from the realm of deep 
learning to train the system for identifying electroplated 
components on the production line in our experimental setup. 
The main aim of this study was to swiftly and accurately 
extract areas of interest from images. To fulfill this objective, 
we initially transformed RGB images into grayscale and 
applied filtering techniques for noise reduction. Subsequently, 
by performing image binarization, dilation, and erosion 
operations, and utilizing the find contours function, we were 
able to effectively extract contour information from the 
images. Ultimately, using the ConvexHull convex hull 
function and the Hough Circle algorithm, we precisely 
determined the gripping positions for the robotic arms. This 
led to the realization of highly efficient and accurate 
automated operations. The following sections will provide a 
detailed explanation of this process. The study utilized 
YOLOv3 running on a specific software-hardware platform. 
The software component employed Python 3.6, TensorFlow 
1.15.2, and Keras 2.3.1 for model development. TensorFlow 
and Keras are acknowledged as among the most 
comprehensive model foundations across all deep learning 
frameworks. All experiments were conducted on a computer 
equipped with the Windows 10 operating system, featuring 
an Intel Core i7-12700H processor (2.3GHz), 32GB of RAM, 

a 1TB solid-state drive, and an NVIDIA GeForce RTX4060 
graphics card. 

III. RESEARCH METHODS 

A. Image Acquisition 

In this experiment, we utilized the uEye XS2 industrial 
camera for image acquisition. This compact camera is 
equipped with an autofocus feature and has a frame rate of 
15.0fps, with a high resolution of 2592×1944 pixels. For 
image processing, we employed the Emgucv 4.3.0.3890 
software. In this experiment, image capture was conducted 
using a conveyor belt, and actual shots were taken on a 
vibration alignment machine, resulting in the acquisition of 
an image dataset, as illustrated in Fig. 2. 

 
Fig. 2. Component image capture dataset. 

B. YOLO Deep Learning Object Detection 

In traditional machine vision applications, the process 
typically involves analyzing the entire image and then 
extracting the Region of Interest (ROI) through methods such 
as binarization, morphological transformations, and the 
findcontours function. This often includes locating the 
contours of the workpiece and drawing a bounding rectangle 
around these contours. Subsequently, conditions such as 
contour area and perimeter are used to filter out non-ROI 
areas and segment the selected regions. However, this 
method is only effective in stable and simple environments. 
In complex environments, it becomes inadequate. Therefore, 
in this study, we have employed the deep learning YOLOv3 
algorithm to extract the image ROI, allowing us to process 
only the ROI area. This significantly reduces the processing 
time. 

In this research, a total of 521 images captured in-house 
were used. From these, 10% (52 images) were randomly 
selected to form the test set, while the remaining 90% (468 
images) were divided into a training set consisting of 90% 
(421 images) and a validation set comprising 10% (47 
images). Since our study focused on a single category of 
annotation, the YOLOv3 network model was employed to 
train the model for identifying electroplated components. We 
utilized the yolo_weights.h5 as the pre-trained weight file, 
provided officially by YOLO, and set the training to run for 
100 epochs. The training was halted prematurely at the 64th 
epoch, as the loss had plateaued, indicating no further 
improvement, with the training loss converging to 5.33 and 
the validation loss to 4.45. This study presents the YOLO 
model’s predictions, displaying four electroplated 
components at random angles in (a) and three electroplated 
components at random angles in (b), as depicted in Fig. 3. 

To evaluate the performance of the trained weights, we 
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utilized metrics such as recall rate, F1-score, and Mean 
Average Precision (mAP). A set of 90 prepared images was 
used as the test set to assess the model’s capability in 
accurately counting electroplated components. Accuracy and 
recall are direct indicators of the model’s ability to 
differentiate samples, with higher values indicating stronger 
recognition capabilities. The results of this study 
demonstrated that the model achieved an average precision of 
97.05%, a recall rate of 100%, an F1-score of 1.00, and a 
mAP of 97.05%. 

 
Fig. 3. Displays the YOLO model’s predictions, depicting four electroplated 
components at random angles in (a) and three electroplated components at 
random angles in (b). 

C. Machine Vision 

In order to rapidly extract the gripping points of 
electroplated components, this study employed computer 
vision algorithms, including binarization, morphological 
processing, contour detection, convex hull analysis, and 
Hough circle transform. Firstly, binarization is a rapid 
segmentation algorithm that divides the image into 
foreground (objects) and background based on pixel 
grayscale differences. This process significantly reduced the 
data volume in the image, making the contours of the 
electroplated components more pronounced. For example, as 
shown in Fig. 4(a), the input image was binarized to separate 
the conveyor belt as the background and the electroplated 
components as the foreground, as depicted in Fig. 4(b). 

However, after binarization, it was observed that there 
were small gaps within the objects. To fill these gaps, this 
study applied a dilation operation. Nevertheless, dilation 
could lead to distortion of the object’s shape, as illustrated in 
Fig. 4(c). Therefore, after dilation, an erosion operation was 
performed to ensure image clarity and successfully segment 
the electroplated components within the foreground, as 
shown in Fig. 4(d). Following these image processing steps, 
the features of the electroplated components became highly 
distinct. 

To prevent the inclusion of other components that 
resemble the ones in this study during the recognition process, 
the FindContours algorithm was employed to detect the 
contours of the electroplated components. Subsequently, 
their arc length and area were calculated, as depicted in Fig. 
4(e). The electroplated components in this study exhibit a 
prominent convex feature, making them well-suited for 
detection using convex hull analysis, as illustrated in Fig. 4(f), 
where the blue portions represent convex hull points, and the 
red portions indicate the connections between these points. 

 
Fig. 4. (a)Input image, (b)Binary output image, (c)Image dilated, (d)Image 

eroded, (e)Image contours, (f)Convex hull detection. 
 

Since this study only requires the convex hull points on 
prominent features, we utilized the Hough Circle algorithm to 
determine the circle’s center and radius. The Hough circle 
radius served as a filtering criterion for selecting convex hull 
points. When the distance from the Hough circle center to a 
convex hull point was greater than the radius, it was retained; 
otherwise, it was filtered out, as shown in Fig. 5(a). 

Subsequently, we took the average of the filtered convex 
hull points to identify the point P3, farthest from the center, 
as depicted in Fig. 5(b). Once we knew the position of point 
P3, we could calculate the angle compensation by connecting 
point P3 with the center, enabling the robotic arm to 
determine the rotation angle, as illustrated in Fig. 5(c). Point 
P4 represents the gripping point of the arm. 

Finally, by subtracting half of the Hough radius from P3 
(P3 point minus half of the protrusion distance), we could 
determine half of the protrusion distance. We then calculated 
the X-coordinate of point P4 by subtracting half of the 
protrusion distance from the X-coordinate of P3, multiplied 
by Cosθ. Similarly, we computed the Y-coordinate of point 
P4 by subtracting half of the protrusion distance from the 
Y-coordinate of P3, multiplied by Sinθ, as shown in Fig. 5(d). 

 
Fig. 5. Hough circle and convex hull point illustration. 

IV. CONCLUSION 

This research has developed an AI-based visual 
recognition system tailored for electroplated components, 
integrating YOLO object detection and image processing 
techniques. The system offers real-time recognition and 
precise positioning of electroplated components on a 
production line. With extensive training, it achieved an 
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average precision of 97.00%. Deep learning and image 
augmentation techniques were employed to enhance 
performance and reliability, reducing the need for manual 
intervention and addressing challenges such as labor 
shortages and quality control. These innovative technologies 
have the potential to significantly enhance production 
efficiency and quality, opening up new opportunities in 
industrial automation and smart manufacturing. The system 
enables rapid classification of electroplated components, 
replacing traditional sorting methods, with a maximum speed 
of 14 items per minute, and it can further increase throughput.  

The automated assembly system developed in this study is 
capable of processing 14 items per minute, resulting in a total 
production capacity of 6,720 items within an uninterrupted 
8-hour operational window. In contrast, a manual operator 
can assemble 26 items per minute, considering a 15% buffer 
for operational comfort, resulting in an average daily output 
of 10,608 items. Consequently, when operating over identical 
time frames, the output from this automated mechanism 
constitutes merely 60% of the yield attainable via manual 
labor. Despite its relatively lower production efficiency 
compared to manual operation, the system presents 
significant advantages, including continuous 24-hour 
operation capability and the potential to mitigate Taiwan’s 
widespread labor shortage issue. The investment for this 
system is expected to be recouped within approximately six 
months if the system operates continuously for 24 hours a day. 
For future recommendations, further optimization of the 
system’s operational workflow could be pursued, along with 
enhancements in machine vision recognition accuracy and 
identification speed. These improvements would effectively 
shorten the system’s operational time while achieving higher 
levels of production efficiency and economic benefits. 
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