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Abstract—To achieve desired surface properties, various 

mechanical processes are used, including mechanical blasting, a 

technique involving the high-pressure projection of grains onto 

a surface. This study focuses on surfaces treated through 

mechanical blasting, specifically analyzing stainless steel 

components. The influence of key manufacturing parameters, 

such as grain shape and rotational speed, is systematically 

investigated across different stages. A comprehensive 

methodology for feature selection is presented, aiming to 

identify crucial roughness parameters and analyze their impact 

on the manufacturing process. The objective is to determine the 

most significant roughness parameters to establish a tailored 

quality control system aligned with the outcomes of mechanical 

blasting. This system provides targeted feedback on the 

manufacturing parameters, enabling precise adjustment and 

achieving the desired surface roughness. This approach 

contributes to sustainable process optimization by minimizing 

rework and reducing rejects 32 3D roughness parameters, 

defined by ISO standards, are calculated and analyzed. Based 

on a data set with 300 measured values, a statistical analysis was 

performed, which includes a correlation analysis and a 

regression analysis using Lasso regression for parameter 

selection. The results of the correlation analysis suggest that 

feature, functional and volume parameters seems to be 

important role for surface characterization. However, in further 

analysis by Lasso regression, the volume parameters were found 

to be irrelavant. In this context, the roughness parameters Spc, 

which represent the arithmetic mean peak curvature of surface 

features, and Spd, which signifies the number of peaks per unit 

area, stand out as notably significant and have been emphasized 

as the most crucial parameters. 
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I. INTRODUCTION 

Due to increasing demands for functionality and aesthetics 

of a product [1], many components produced by additive or 

conventional manufacturing undergo finishing processes for 

material and surface enhancement. One such process is 

mechanical blasting, a manufacturing technique where an 

abrasive medium is accelerated and brought into contact with 

the component surface using blasting systems [2]. In this 

study, an innovative blasting technology is being 

investigated, primarily focused on surface cleaning and 

optical modification. This technology involves a blasting 

system developed by company BMF, where the abrasive 

medium is distributed using a centrally located, horizontally 

operating impeller wheel with a curved blade geometry. The 

components are mounted on a satellite holder and move in a 

conical path around the rotating impeller wheel. A schematic 

illustration of the blast wheel is shown in Fig. 1. The blasting 

system generates a homogeneous surface structure by 

combining rotational and oscillatory movements, enabling 

the components to traverse the impeller blast at different 

angles with each revolution. However, to achieve an optimal 

blasting process, precise definition of its parameters is 

imperative, particularly in accurately describing the desired 

surface. A comprehensive overview of the key parameters is 

presented in Fig. 1: 

 

 
Fig. 1. Input-throughput-output diagram of the mechanical  

blasting process [3]. 
 

As shown in Fig. 1, main factors influencing the blasting 

result or the surface roughness are the grain shape and the 

rotational speed of the blast wheel. This study aims to 

demonstrate the functional relationships between these two 

influencing factors and surface roughness. The objective is to 

identify the optimal roughness parameters that effectively 

characterize a mechanically blasted surface from an optical 

perspective. 

Traditionally, 2D parameters have been predominantly 

used for surface roughness characterization. These 

parameters are derived from surface scanning within a 

defined plane, resulting in a one-dimensional representation 

of surface elevations. One widely utilized 2D parameter for 

describing surface roughness is Ra, which provides a general 

indication of the average roughness by considering overall 

height deviations from the centerline [1, 4]. Due to its 

simplicity and rapid quantification, Ra has become an 

established parameter in various fields for surface roughness 

description [5]. However, 2D parameters like Ra have 
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limitations in capturing all aspects of surface roughness, 

including texture and structural features, due to limited 

information depth [6]. In the case of mechanically blasted 

surfaces, visual differences cannot be reliably represented by 

2D parameters like Ra. Surfaces with similar Ra values may 

exhibit significant visual disparities due to differing 

structures. This effect is illustrated in Figs. 2 and 3. 

Fig. 2. A Qualitative comparison between different profiles of the surface 

roughness of components manufactured with different grain shapes  

a) blasted with round grain, b) blasted with mixed (round/edged) grain, 
c) blasted with edged grain. 

Fig. 2 presents images of three mechanically blasted 

components, where differences in the profile are evident but 

are not reflected in the Ra value. The differences are also 

visually apparent, as shown in Fig. 3 with further illustrations 

of the components: 

Fig. 3. Images of mechanically blasted samples with identical Ra values 

(approx. 2 µm), yet exhibiting discernible optical discrepancies,  
a) round grain, b) mixed grain, c) edged grain. 

The components were illuminated uniformly across their 

surfaces and captured from two different perspectives. The 

utilization of different grain shapes is reflected not only in the 

surface structure but also in color, which can be attributed to 

the glossiness and reflection properties of the surfaces. As 

illustrated by Fig. 2 and Fig. 3, it becomes evident that 2D 

parameters, such as Ra, are insufficient for characterizing 

surface roughness when structural differences in the surface 

are perceptible optically. Consequently, the importance of 3D 

parameters is increasingly recognized, as they enable a more 

precise and comprehensive characterization of surface 

roughness by including the spatial distribution and texture of 

surface features. This enables a more detailed analysis of 

surface roughness, allowing better fulfilling the quality 

requirements in terms of functionality and aesthetics [5–7]. In 

this study, a total of 32 3D parameters were determined, and 

their relevance with regard to the manufacturing parameters 

of abrasive particle shape and rotational speed was analyzed. 

The findings of this analysis will be presented in the 

subsequent sections. 

II. STATISTICAL ANALYSIS

A. Data Set and Experimental Procedure

To conduct the analysis, a representative dataset of 

mechanically blasted surfaces was utilized. For this study the 

conducted samples were plates made of stainless steel 

(X5CrNi18-10) with a size of 10×10 cm and were fabricated 

with varying manufacturing parameters. In the present case, 

the manufacturing parameters differ in terms of grain shape 

and rotational speed. The grain is made of stainless steel with 

a size of 0.1 mm. Specifically, two variations of grain shape 

(round and mixed) and three variations of rotational speed of 

the blast wheel (4,000, 7,000, 9,000 rpm) were considered. 

Consequently, a total of six distinct combinations of grain 

shape and rotational speed were generated, and their 

relationships with the 3D parameters were analyzed. The 

examined combinations are presented in Table 1. 

Table 1. Combination for the manufacturing parameters 

analyzed in this study 

No.  Grain shape Rotational speed [in rpm] 

1. Round (S) 4,000 

2. Round (S) 7,000 

3. Round (S) 9,000 

4. Mixed (SGM) 4,000 

5. Mixed (SGM) 7,000 

6. Mixed (SGM) 9,000 

For each parameter combination listed in Table I, two 

samples were prepared. In total, the measurements were thus 

performed on 12 samples. For each sample 50 measurements 

were taken, so the study is based on a data set of 300 

measurements. To capture a surface image that closely 

approximates reality, measurement points were randomly 

selected across the surface. A confocal microscope 

CONSIGNO by twip was used for the measurements. The 

measuring tip has a size of 180×110×55 mm³. Furthermore, 

it uses a 450 nm laser diode as the light source with a camera 

resolution of 1280×1024 pixels. 
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B. Correlation Analysis 

A correlation analysis was conducted to gain insights into 

the data structure and the relationships between the 

manufacturing parameters and the 3D parameters. The 

Bravais/Pearson correlation coefficient was used for this 

purpose. The Pearson correlation coefficient, denoted as r, is 

calculated as the ratio of the covariance (cov) between 

variables x and y and their respective standard deviations 

s [8]: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 =
cov(𝑥,𝑦)

𝑠𝑥∙𝑠𝑦
                         (1) 

The correlation coefficient can assume values between 1 

and −1, with the sign indicating the direction of the 

correlation. For instance, a coefficient of r = 1 implies that 

when variable x changes by one unit, variable y will change 

positively by one unit. Accordingly, a value of r = 0 indicates 

no correlation between the variables. Fig. 4 illustrates the 

correlations between the examined 3D roughness parameters 

and the manufacturing parameters (grain shape, rotational 

speed). 

 

 
Fig. 4. Correlations between the 3D roughness parameters and the 

manufacturing parameters (grain shape, rotational speed). 

 

As shown in Fig. 4, the correlations predominantly exhibit 

a positive direction. Generally, both manufacturing 

parameters show correlations with the same parameters, 

although the correlations with rotational speed are slightly 

more pronounced. Furthermore, it becomes evident that there 

are particularly connections between the functional, 

volumetric, and feature parameters. 

C. Lasso Regression 

Regression models are often used for statistical analysis 

and are also a popular method for predicting results. The 

selection of an appropriate regression model depends on the 

model’s ability to provide the best predictions of the 

outcome [9]. Various studies have shown that standard 

regression methods contain certain drawbacks, making their 

use unsuitable for some applications. For example, one major 

disadvantage is the tendency to overfitting. Overfitting occurs 

when the model becomes excessively tailored to the 

underlying training data, compromising its ability to make 

accurate predictions on new, independent data. For example, 

random variations in the training dataset may be erroneously 

interpreted as genuine relationships, despite their lack of 

applicability to new data. In particular, overfitting is more 

likely to occur in models that incorporate numerous variables 

or parameters, as well as those with high complexity [10]. 

Accordingly, to address this concern, the present study 

utilized Lasso regression to analyze key metrics, ensuring a 

more robust approach. 

In order to conduct Lasso regression, the independent 

variables consisted of the 3D parameters, while the dependent 

variable was represented by manufacturing parameters within 

the model. Through Lasso regression, the coefficients 

associated with insignificant 3D parameters were 

automatically shrunk, effectively eliminating those 

parameters that made an insignificant contribution to the 

prediction of surface roughness. The Lasso regression 

technique incorporates L1 regularization, wherein a penalty 

equal to the absolute value of the coefficients’ magnitude is 

added. This form of regularization promotes sparsity in the 

models, with a subset of coefficients potentially being driven 

to zero and thus excluded from the model. By increasing the 

penalty parameter, the coefficient values tend towards zero, 

thereby facilitating the creation of parsimonious models with 

reduced complexity [11]. Lasso solutions involve quadratic 

programming problems that are typically solved using 

specialized software, such as Matlab. The primary objective 

of the algorithm is to minimize a specific objective function 

Eq. (2): 

∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )
2

+ 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑛
𝑖=1                      (2) 

This objective function (Eq. (2)) can be understood as 

minimizing the sum of squares subject to the constraint that 

the sum of the absolute values of the coefficients (denoted by 

Σ |βj|) is less than or equal to a predetermined threshold value 

(represented by “s”). Through this optimization process, 

certain coefficients, βs, may be shrunk precisely to zero, 

leading to a regression model that is easier to  

interpret [10, 12–14]. The strength of the L1 penalty is 

controlled by a tuning parameter, λ. This parameter serves as 

a measure of shrinkage: 

• When λ is set to zero, no coefficients are eliminated, and 

the estimate corresponds to that obtained through linear 

regression. 

• As λ increases, more coefficients are progressively set 

to zero and eliminated from the model, potentially 

resulting in a scenario where, theoretically, all 

coefficients are eliminated when λ approaches infinity. 

• As λ increases, the bias of the model increases. 

• Conversely, as λ decreases, the variance of the model 

increases. 

It is worth noting that when an intercept term is included 

in the model, it is typically left unchanged during the Lasso 

regularization process [3, 10]. 

Following Lasso regression, the metrics that exhibit longer 

non-zero lines are considered to have a greater influence on 

the prediction. Accordingly, these metrics can be regarded as 

important predictors as they retain significant coefficients 

despite the shrinkage process. 

Fig. 5 shows the results of the Lasso regression, narrowing 

down only to the nine most importantly identified: 
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Fig. 5. Feature selection and most important 3D roughness parameters. 

Based on the results shown in Fig. 5, notably the metrics 

Spc and Spd were identified as key metrics. Among them, the 

metric Spd stands out notably. According to DIN ISO 

25178 [15], the Spd metric represents the peak density, which 

measures the number of peaks per unit area of 1 mm² (Fig. 6) 

while the Spc metric quantifies the average curvature radius 

of peaks in surface features [15, 16]. 

 

 
Fig. 6. Density of peaks (Spd) [17]. 

III. CONCLUSION 

In this work, the methods of correlation analysis and lasso 

regression were used to identify the most important 

roughness parameters. According to the results of the 

correlation analysis, most roughness parameters show strong 

correlations with the rotational speed, whereas there are no 

strong correlations with the grain shape. Based on these 

results, it is only possible to narrow down the roughness 

parameters to a limited extent, which is why a feature 

selection method was used. The feature selection was 

implemented using lasso regression. Using this method, the 

roughness parameters Spd and Spc were identified as 

particularly important. Fig. 7 illustrates the results of Spd and 

Spc. 

 

 
Fig. 7. Classification of the manufacturing parameters using Spd and Spc. 

As can be seen from Fig. 7, the parameters Spd and Spc are 

suitable for an initial classification of the production 

parameters. A distinction between the grain shapes is thus 

evident. However, the clear delimitation of the rotational 

speeds is more difficult, particularly in the higher range 

between 7,000 and 9,000 rpm. Further analyses are therefore 

required to determine whether additional parameters need to 

be included or whether the Spd and Spc parameters are 

sufficient. 

IV. SUMMARY 

This study introduces a methodology for selecting 

appropriate 3D roughness parameters to characterize 

mechanically blasted surfaces. Initially, a correlation analysis 

was conducted to explore the relationships between 

manufacturing parameters and roughness parameters. 

Subsequently, a Lasso regression was performed to identify 

key parameters that effectively characterize mechanically 

blasted surfaces. Interestingly, the Lasso regression results 

highlight a small number of 3D parameters as particularly 

important, with the Spc and Spd parameters standing out 

significantly. These parameters maintain notable correlations 

with the manufacturing parameters, even after considering 

the correlation analysis. However, other parameter classes, 

such as volume and functional parameters, display strong 

correlations but are deemed insignificant in the context of 

Lasso regression. These findings underscore the selective 

significance of specific parameters in accurately 

characterizing mechanically blasted surfaces. The identified 

parameters offer valuable insights for implementing a 

targeted feedback mechanism to control manufacturing 

parameters and produce surfaces with desired optical 

properties. The feasibility and statistical validation of 

implementing a precise feedback loop using these parameters 

will be explored in further research. 

The results of this study offer preliminary findings for 

characterizing mechanically blasted surfaces. Notably, 

previous studies have also recognized Spd as a critical 

parameter in Electrical Discharge Machining (EDM) [18]. 

Given the similarities between eroded surfaces and 

mechanically blasted surfaces, such as their irregular 

structures without preferential orientation, it is reasonable to 

hypothesize that both processes share common parameters for 

effective roughness characterization, with Spd playing a 

crucial role in both cases. Fig. 3 illustrates the impact of grain 

shape on the visual perception of components, resulting in 

varying levels of surface glossiness based on the grain shape. 

This glossiness could be associated with the curvature 

behavior of the peaks, as different curvatures influence 

reflection properties. Further complementary analyses are 

necessary to validate the identified parameters and research 

findings. The findings of this study provide crucial insights 

and contribute to a targeted research effort for the further 

investigation for feature selection. 
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