
  

  
Abstract—In recent years, researches on adaptive control 

have focused on bio-inspired learning techniques to deal with 
real-life applications. Reinforcement Learning (RL) is one of 
these major techniques, which has been widely used in robot 
control approaches. The implementation of artificial neural 
networks in RL algorithms enables more efficient optimal 
control strategies. This article proposes a field application of 
neural network reinforcement learning (NNRL) for walking 
control of an active simulated 3-link biped robot. The adaptive 
control agent consists of two neural network units, known as 
actor and critic for learning prediction and learning control 
tasks. Results of the presented control method reveal its 
efficiency in stable walking control of the biped robot model as 
a nonlinear complex dynamic task. 
 

Index Terms—Adaptive control, biped robot, neural 
network reinforcement learning,stable walking. 
 

I. INTRODUCTION 
Reinforcement learning (RL) is a widely used machine 

learning framework in which an agent tries to optimize its 
behavior during its interaction with its initially unknown 
environment to solve sequential decision problems that can 
be modeled as Markov Decision Processes (MDPs) [1]. In 
RL, the learning agent tries to maximize a scalar evaluation 
(reward or control cost) and modify the policies through 
actions.  Hence, RL is an efficient framework for solving 
complex learning control problems.The main components of 
the RL algorithm are the state signal, action signal and the 
reward signal, which are demonstrated in Fig. 1. 

There are three main elements in RL schemes [2]: 
 The agent, which predicts the future reward in order to 

increase the reward’s value with value functions. In 
many applications with or without having the model of 
the environment, value function implementation is 
preferred.     

 The policy, one of the major elements in RL, which 
determines the behavior of the agent over the operation 
time and it may be stochastic or deterministic.  

 The reward function, which demonstrates each 
particular time action reward value. The reward (total 
reward) is generally defined as the sum of the rewards 
over time. If the action leads to the goal, the reward 
will increase. Conversely, the reward will be decreased 
if an action distracts the agent.  
 

Immediate or delayed rewards may be employed by 
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assuming a discount factor for the rewards over time. 

 
Fig. 1. Reinforcement learning [17]. 

 
In recent years, RL has been studied in several different 

fields such as neural networks (NN), operations research, 
and control theory [3]-[6]. Moreover, RL can be seen as 
adaptive optimal control [7]. Studies on human brain reveal 
that RL is a major human learning mechanism in basal 
ganglia [8]. The main goal of the researches is to develop 
NNRL agents, which are able to survive and optimize the 
system’s behavior during their interaction with the 
environment. According to the importance of function 
approximation and generalization methods in NNRL, they 
have been a key research interest recently [9], [10].  

A recent study by Tang et al. [11] has been done on 
trajectory tracking of an n-link robot manipulator. The 
proposed controller consists of two neural networks as the 
actor and critic with a satisfying tracking error. However, 
the effect of input nonlinearities, such as dead-zone input 
and hysteresis has not been considered in this paper. Farkaš 
et al. [12] investigated a two-layer perceptron, actor-critic 
architecture, and an echo-state neural-network based 
modules that were trained in different ways on the iCub 
robot action learning (point, touch, and push). They found 
that the trained model is able to generalize well in case of 
action-target combination with randomized initial arm 
positions and also adapt its behavior to sudden changes 
during motor execution. In another recent study, Bhasin et al. 
[13] combined robust integral of the sign of the error with 
the actor-critic architecture to guarantee the asymptotic 
tracking of the nonlinear system with faster convergence. 
However, this controller does not ensure optimally.  

In addition, some of the recent studies were devoted to 
central pattern generators (CPGs) RL. Nakamura et al. used 
the CPG-actor-critic method for RL of a biped robot and 
demonstrated that the proposed method enabled the robot to 
walk stably and also adapt to the environment [14]. 

The growing popularity of NNRL algorithms in nonlinear 
adaptive control led us to implement this method in walking 
control of a biped robot. Motivated by this belief, first, 
efforts were made to investigate the robot’s dynamics in the 
next section. Afterwards, the NNRL control design is 
presented. Then, results and conclusions are demonstrated 
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and in the end, conclusions and future outlook are provided.   
 

II. BIPED ROBOT'S DYNAMIC MODELING 
In this section, the dynamical model of a planar 3-link 

biped robot is introduced. The proposed biped robot consists 
of a torso, hips, and two equal length legs with no ankles or 
knees. Also, two torques are applied between the legs and 
torso. Angular coordinates definition and the masses of the 
torso, hips and legs of the biped robot disposition are shown 
in Fig. 2.It is assumed that the positive angles are computed 
in a clockwise manner with respect to the indicated vertical 
lines and all links are mass centered and the masses of the 
links are lumped. The walking cycle takes place on the 
surface level of sagittal plane. In addition to this, walking 
phases assumed to be successive, where only one leg (stance 
leg) touching the walking surface (the swing phase), and the 
transition from one leg to another taking place in a small 
length of time. The stance leg is modeled like a pivot and 
the swing leg is assumed to move into the frontal plane 
during swing the phase [15], [16]. The swing leg renters the 
plane of the motion when the angle of the stance leg attains 
a given desired value.  

In this dynamic model, the walking cycle of the biped 
robot is defined in two parts: the model of the swing phase 
and another one that describes the impact event of the swing 
leg with the walking surface, which are discussed below. 

 

 
Fig. 2. 3-link biped robot. 

 

A. Dynamic Model 
A second order system obtained from the Lagrange 

method describes the dynamical model of the robot during 
the swing phase [17]: 
ሷߠሻߠሺܯ  ൅ ,ߠ൫ܥ ሶߠሶ൯ߠ ൅ ሻߠሺܩ ൌ  (1)                  		ݑܤ
 
where	ߠ ൌ ሾ1ߠ, ,2ߠ 3ሿܶߠ ݑ, ൌ ሾݑଵ, ଶሿ்ݑ  are the link angles and 
input torques to the legs. M, C, G, and B are the mass matrix, 
nonlinear term, the gravity term and a constant respectively. 

We can write the second order differential Eq. (1) into 
state-spaceform by defining: ݔሶ ≔ ௗௗ௧ ൫ఏఏሶ ൯ ൌ ቈ ,ߠ൫ܥሻൣെߠଵሺିܯሶߠ ሶߠሶ൯ߠ െ ሻߠሺܩ ൅  ൧቉           (2)ݑܤ

B. Impact Model 
In our simulations, we have modeled the impact between 

the swing leg and the ground as the contact between two 
rigid bodies. Obtaining the velocity of the generalized 
coordinates after the impact of the swing leg with the 
walking surface in terms of the velocity and position before 
the impact is the main objective of this model. The proposed 
impact model for our biped robot is based on the rigid 
impact model of Ref. [18]. Moreover, we have assumed that 
the contact of the swing leg with the walking surface 
produce either no rebound nor slipping of the swing leg, and 
the stance leg lifting the walking surface without interaction. 
These assumptions are valid if the following conditions are 
satisfied. 

 The impact occurs over an infinitesimally small period 
oftime; 

 2. Impulses can represent the external forces during 
impact. 

 3. Impulsive forces may change the velocities of the 
generalized coordinates instantaneously, but positions 
remain continuous. 

 4. The supplied actuators torques is not impulsive. 
Based on the previous assumptions, the impact model 
is expressed with Eq. (3)[19]: 

 ൤ܯ௘ െܧ்ܧ 0 ൨ ൤ߠሶ௘ାܨ ൨ ൌ ൤ܯ௘ߠሶ௘ି0 ൨                  (3) 

 
where	݁ߠ ൌ ሾ1ߠ, ,2ߠ ,3ߠ ,ݔ ሶ௘ିߠ ,௘ is the generalized mass matrix, F is the force matrixܯ ,ሿܶ are the generalized coordinatesݕ  
and ߠሶ௘ା, are the velocities before and after impact. Also, E is 
defined as following. 
ܧ  ൌ ൤ ଵሻߠሺݏ݋ܿݎ െݏ݋ܿݎሺߠଶሻ 0 1 0െ݊݅ݏݎሺߠଵሻ ଶሻߠሺ݊݅ݏݎ 0 0 1൨          (4) 

 
Also, r is the links equal lengths. 

 

III. NEURAL NETWORK REINFORCEMENT LEARNING 
DESIGN 

Typically, in machine learning, the environment is 
formulated as a Markov decision processes (MDPs). 
According to [19], [20], a MDP consists of a set of states,	ܵ, 
and a set of actions denoted by a . Associated with each 
action, there is a state transition matrix ܲሺܽሻ and a reward 
function ݎ: ܵ ൈ ܣ → ܴ, where ݎሺݔ, ܽሻ is the expected reward 
for doing the action a  in state ݔ . A policy is a mapping ߨ: ܵ → ܣ  from states to actions. This policy is both 
stationary and deterministic. The RL’s goal is to find policy ߨ , which maximizes the expected value of a specified 
function, 	݂ , of the immediate obtained rewards while 
following the policy ߨ. This expected value is defined in Eq.  
(1). 
ሻߨሺܬ  ൌ ,ଵݎሼ݂ሺܧ ,ଶݎ … ሻ|ߨሽ                      (5) 

 
Particularly, actor-only methods deal with a 

parameterized family of policies which has the benefit of 
generating a spectrum of continuous actions; however, the 
implemented optimization methods (policy gradient 
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methods) have the disadvantage of high variance in the 
estimates of the gradient, which results in slow learning [21].  

Critic-only methods use temporal difference learning and 
have a lower variance in the expected returns estimates. 
These methods usually work with discrete action space. As a 
result, this approach is not able to find the true optimum. 
[22].  

The actor–critic algorithms have been shown to be more 
effective than value function approximation (VFA), and 
policy search in online learning control tasks with 
continuous spaces [23]. Actor-critic methods provide the 
advantages of actor-only and critic-only methods by 
computing continuous actions without the need for 
optimization procedures on a value function and supplying 
the actor with low-variance knowledge of the performance, 
at the same time. This leads to a faster learning process. The 
convergence properties of actor-critic methods usually are 
more satisfying than critic-only methods [24]. Fig. 3 
demonstrates the overall scheme of the actor-critic RL. 

 
Fig. 3. Overall scheme of actor-critic reinforcement learning. 

 
Here, our main purpose is to minimize the angle between 

the torso and the vertical line by means of the links' torques, 
applied to each of the legs' links. The control law is defined 
in Eq. (6).  
,ߠ൫ݑ  ሶ൯்ߠ ൌ െ݌ሺߠ െ ௗሻߠ െ ݇൫ߠሶ െ  ሶௗ൯            (6)ߠ
 
where the 'd' notation reveals the desired values, resulted 
from the neural network training and the control constants 
are: 
݌  ൌ ݀݅ܽ݃ሾ0, 0, ,ଶ݌ ݇ ଷሿ݌ ൌ ݀݅ܽ݃ሾ0, 0, ݇ଶ, ݇ଷሿ 
 

The learning agent alternates the control constants in each 
step to obtain the maximum reward. The reward is directly 
related to the angle between the torso and the vertical line.  

The learning process continues until the robot learns how 
to retain its stability by the joint torque control.   

 

IV. RESULTS AND DISCUSSION 
Motivated by the advantages of the actor-critic methods 

and their satisfying convergence speed besides their low 
variance, we have implemented these methods for nonlinear 
dynamic control of our simulated biped robot. In addition, 

we have used the feed forward neural networks in the actor 
and the critic in order to enhance the performance of the 
system.  

In the first step, we have simulated the biped robot’s 
dynamics equations, which represents the environment for 
the learning unit. Then, we have designed two three-layered 
perceptron feed forward neural networks as the actor and the 
critic for the NNRL agent.  The network weights of the actor 
and the critic are variable. These weights converge to a fixed 
value as the learning process converges to an optimal 
solution. Fig. 4 illustrates the obtained reward for the 
iterations over the operation time. 

As can be clearly seen, the reward approximately reaches 
its optimal value in a few iterations. This demonstrates the 
NNRL strength to deal with the nonlinear dynamics of the 
simulated biped robot.  

 

 
Fig. 4. Discounted reward in learning process. 

 
The results of our simulations also reveal that the 

trajectory of the proposed biped robot’s torso orbits in a 
limit cycle in phase space as depicted in Fig. 5. This, 
represents the stability of the robot after learning. However, 
some perturbations may occur before the convergence of the 
learning agent to an optimal solution. 

 

 
Fig. 5. Torso trajectory limit cycle. 

 

V. CONCLUSION 
As an interdisciplinary area, the combination of 

reinforcement learning (RL) and neural networks algorithms 
has changed the face of modern optimal control significantly 
and became a key research interest in various domains such 
as robotics, control theory, operational research, and finance. 
In this paper, a neural network reinforcement learning 
algorithm is proposed for walking control of a 3-link planar 
biped robot.    

The proposed controller is an actor-critic reinforcement 
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learning unit, in which the actor and the critic are two 3-
layered feed forward neural networks with variable network 
weights. The results reveal the ability of the proposed neural 
network reinforcement learning method to control the 
stability of the robot’s links after a few numbers of iterations.  

REFERENCES 
[1] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive 

dynamic programming for feedback control,” Circuits and Systems 
Magazine, vol.  9, no. 3, pp. 32-50, 2009. 

[2] R. Sutton and A. G. Barto, Reinforcement Learning, An Introduction, 
Cambridge MA, 1998. 

[3] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement 
Learning and Dynamic Programming Using Function Approximators, 
CRC Press, NY, 2010. 

[4] J. K. Williams, “Reinforcement learning of optimal controls,” 
Artificial intelligence Methods in the Environmental Sciences, pp. 
297-327, 2009. 

[5] C. Szepesvri, Algorithms for Reinforcement Learning, Morgan and 
Claypool, USA, 2010. 

[6] X. Xu, Reinforcement Learning and Approximate Dynamic 
Programming, Science Press, Beijing, 2010. 

[7] R. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is 
direct adaptive optimal control,” in Proc. the American Control 
Conference, pp. 2143-2146, 1992. 

[8] P. J. Werbos, “Intelligence in the brain: A theory of how it works and 
how to build it,” Neural Networks, pp. 200-212, 2009. 

[9] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode 
reinforcement learning,” Journal of Machine Learning Research, vol. 
6, pp. 503-556, 2005. 

[10] A. G. Barto and T. G. Dietterich, “Reinforcement learning and its 
 J. Si, A. Barto, W. Powell, D. 

Wunsch, Eds., Handbook of Learning and Approximate Dynamic 
programming, Wiley-IEEE Press, New York, 2004. 

[11] L. Tang and Y. Liu, “Adaptive neural network control of robot 
manipulator using reinforcement learning,” Journal of Vibration and 
Control, vol. 3, June 2013. 

[12] I. Farkaš, T. Malík, and K. Rebrová, “Grounding the meanings in 
sensor motor behavior using reinforcement learning,” Frontiers in 
Neurobotics, vol. 6, no. 1, pp. 1-13, 2012. 

[13] S. Bhasin , N. Sharma, P. Patre, and W. Dixon, “Asymptotic tracking 
by a reinforcement learning-based adaptive critic controller,” Journal 
of Control Theory Application, vol. 9, no. 3, pp. 400-409, 2011. 

[14] Y. Nakamura, T. Mori, M. Sato, and S. Ishii, “Reinforcement learning 
for a biped robot based on a CPG-actor-critic method,” Neural 
Networks, vol. 20, pp. 723-735, 2007. 

[15] T. M. Geer, “Passive dynamic walking,” International Journal of 
Robotics Research, vol. 9, no. 2, pp. 62-82, 1990. 

[16] S. L. C. Maciel, O. Castillo, and L. T. Aguilar, “Generation of 
walking periodic motions for a biped robot via genetic algorithms,” 
Applied Soft Computing, vol. 11, pp. 5306-5314, 2011 

[17] R. Kelly, R. Santibanez, and A. Loria, Control of Robots 
Manipulators in Joint Space, Springer-Verlag London Limited, 2005. 

[18] Y. Hurmuzlu and D. Marghitu, “Rigid body collisions of planar 
kinematic chains with multiple contact points,” International Journal 
of Robotics Research, vol. 13, no.  1, pp. 82-92, 1994. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[19] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. 
Morris, “Systematic design of within-stride feedback controllers for 
walking,” in Feedback Control of Dynamic Bipedal Robot 
Locomotion, Taylor and Francis/CRC, pp. 137–11891, 2007. 

[20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution 
Programs, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 
1994. 

[21] V. R. Konda and J. N. Tsitsiklis, “On Actor-critic algorithms,” SIAM 
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166, 
2003. 

[22] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of 
reinforcement learning with function approximation,” in Proc.  the 
25th International Conference on Machine Learning, Helsinki, 
Finland, pp. 664–671, 2008. 

[23] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm 
to solve the continuous-time infinite horizon optimal control problem,” 
Automatica, vol. 46, no. 5, pp. 878–888, 2010. 

[24] V. R. Konda and J. N. Tsitsiklis, “On Actor-critic algorithms,” SIAM 
Journal on Control and optimization, vol. 42, no. 4, pp. 1143–1166, 
2003. 

 
Ahmad Ghanbari received his B.Sc. and M.Sc. in 
mechanical engineering in 1978 and 1981 
respectively from University of California Pomona. 
   He also received his Ph.D. in control engineering in 
2007 from University of Tabriz, Iran. 

He is currently the head of the School of 
Engineering Emerging Technologies, University of 
Tabriz, Iran. Also, he is an associate professor in 
faculty of mechanical engineering at University of 

Tabriz, Iran. 
Ghanbari is a member of ASME, ISME and also the head of the Iranian 

Society of Mechatronics. 
His research interests include mechatronics, advanced control, biped 

robots, and nonlinear dynamics. 
 

Yasaman Vaghei received her B.Sc. in mechanical 
engineering from Ferdowsi University of Mashhad, 
Iran in 2012. She is now a M.Sc. student of 
mechatronics engineering at School of Engineering 
Emerging Technologies, University of Tabriz, Iran. 

She has been working in robotics field since 2004 
and achieved prizes in various robotics competitions. 

Miss Vaghei is a member of ASME, ISME, and 
Iranian Society of Mechatronics. 

Her research interests include adaptive control, learning algorithms, and 
robotics. 
 

Sayyed Mohammad Reza Sayyed Noorani received 
his M.Sc. and Ph.D in mechanical engineering in 
2009 and 2013 respectively from Faculty of 
Mechanical Engineering, University of Tabriz, Iran.  

He is currently with the Mechatronics Engineering 
Department, School of Engineering Emerging 
Technologies, and University of Tabriz, Iran.  

Noorani is currently a member of Iranian Experts, 
and Iranian Society of Mechatronics. 

His research interests include arm dynamics, biped locomotion, and 
mobile robots. 
 

452

IACSIT International Journal of Engineering and Technology, Vol. 7, No. 6, December 2015

relationship to supervised learning,” in




